

Introduction

- Reasons for non-equatorial space elevators:
 - Added flexibility for anchor location.
 - Avoid geosynchronous orbit.
 - Avoid most intense part of radiation belts.
 - Avoid Martian moons.
- Questions on non-equatorial space elevators:
 - Maximum latitude.
 - Effect on payload to elevator mass ratio.

Outline

- Static Equations
- Properties of Non-Equatorial Elevators
 - Description of Solutions
 - Reachable Lattitudes
- Practical Concerns
 - Payload to Elevator Mass Ratio
 - Horizontal Force on Anchor
 - Deployment

Equilibrium of Elevator

Forces acting on Elevator

Counterweight

- Gravity
- Centrifugal Force
- Tension at Anchor

Anchor

Earth

Equatorial Plane

• No shear stress:
$$\frac{d \vec{r}}{d s} = \frac{\vec{T}}{T}$$

• Newton's second law: $\frac{d \vec{T}}{d s} = \rho A \vec{\nabla} V$

• Uniform-stress condition: $T = \sigma_0 A$

• Counterweight boundary:
$$\vec{T} = -m \vec{\nabla} V$$

- No shear stress: $\frac{d\vec{r}}{ds} = \frac{\vec{T}}{T} \notin \vec{u}$ • Newton's second law: $\frac{d\vec{T}}{ds} = \frac{\rho}{\sigma_0} T \vec{\nabla} V$
- Uniform-stress condition: $T = \sigma_0 A$
- Counterweight boundary: $\vec{T} = -m \vec{\nabla} V$

• No shear stress:
$$\frac{d\vec{r}}{ds} = \vec{u} \int \frac{dT}{ds} = \frac{\rho}{\sigma_0} \vec{T} \, \vec{\nabla} V \cdot \vec{u}$$

• Newton's second law: $\vec{T} \frac{d\vec{u}}{ds} = \frac{\rho}{\sigma_0} \vec{T} (\vec{\nabla} V)_{\perp}$
• Uniform-stress condition: $T = \sigma_0 A$

• Counterweight boundary:
$$\vec{T} = -m \vec{\nabla} V$$

- No shear stress: $\frac{d\vec{r}}{ds} = \vec{u}$ Newton's second law: $d\vec{u} = \frac{\rho}{\sigma_0} (\vec{\nabla} V)_{\perp}$
 - Uniform-stress condition: $T = \sigma_0 A$
 - Counterweight boundary: $\vec{T} = -m \nabla V$

• Taper Equation $A = A_0 e^{\frac{\rho}{\sigma_0}V}$

• Shape Equation
$$\frac{d^2 \vec{r}}{d s^2} = \frac{\rho}{\sigma_0} (\vec{\nabla} V)_{\perp}$$

• Counterweight boundary: $\vec{T} = -m \vec{\nabla} V$

Taper

- Taper Equation can be integrated without knowing the potential.
- Taper ratio increases exponentially with potential barrier.
- Compare Strength to Weight ratio with potential barrier to determine if elevator is easy to make.
 - Ratio is 0.97 for Edwards elevator.

 $\frac{d^2 \vec{r}}{d s^2} = \frac{\rho}{\sigma_0} (\vec{\nabla} V)_{\perp} \quad \text{Shape}$

• Tether curves towards areas of higher potential.

Counterweight Boundary $\vec{T} = -m \vec{\nabla} V$ Condition

- The counterweight boundary condition determines where we can terminate the elevator:
 - Tension must be parallel to local gravity field
 - Gravity field must point away from the end of the tether.
 - Mass of the counterweight must be just right.

The Rotating Coulomb Potential $V = -V_0(\frac{1}{2}\hat{r}^2 + \frac{1}{\hat{r}})$ $\vec{g}(\vec{r}) = g_0(\vec{r} - \frac{\vec{r}}{\hat{r}^3})$

Solutions in the Coulomb Potential

- Solutions are planar.
- Boundary not always satisfied.

Reachable Latitudes

• For each latitude there is a small range of tether inclinations

(III)

59

60

The Arc-Tangent Formula

 Empirical formula works well when synchronous altitude far above surface.

Inclination at Base of Elevator

- Payload (vertical component)
 - Taper ratio roughly independent of latitude.
 - Elevator length roughly independent of latitude.

 θ

- Inclination of anchor depends on latitude.
- Payload to mass ratio goes like $\cos(\theta)$
- Can actually get past this.
- Horizontal force
 - Anchor needs to provide continuous thrust.

How far can we go?

- Deployment of initial tether needs to be equatorial.
- Can move away from equator during buildup phase.
- May have to change longitude if target longitude occupied by geosynchronous satellite.

Conclusion

- Have covered:
 - Statics of non-equatorial space elevators
 - Where they can be
 - How much they can lift
- Needs more study:
 - Dynamic effects
 - Changes due to climber presence
 - More effort on solving shape in limit cases
- Brad, what question do you want answered?

Do you have funding for Space Elevator research?

